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ON CONVECTION IN A FLUID FILLING THE CAVITY OF A MOVING SOLID BODY"

A. G. 2ARUBIN and NGO ZUI KAN

The problem of simultaneous motion about a fixed point ¢ of a solid body and un-
evenly heated viscous incompressible fluid completely filling a finite cavity of the
body is considered in linear formulation. The center of mass of the system body
plus fluid in the state of mechanical equilibrium is assumed to coincide with point

0. The theorem on solvability of the Cauchy problem for small unsteady equili-
brium perturbations is proved, and normal perturbations and the spectrum of the
problem arising in the analysis of such perturbations are investigated. It is shown
that the whole spectrum consists of normal eigenvalues and lies in some half-band
containing the real axis. It is shown that the respective system of root vectors is
complete. Properties of the spectrum and the dependence on Rayleigh numbers are
investigated. Rayleigh numbers for which the real parts of eigenvalues are positive,i.e,
when the generated oscillating normal perturbations are damped in time, are evaluat-
ed in the case of the fluid being heated from below and above.

1. Statement of the problem. Let a solid body with a cavity completely filled with
nonuniformly heated viscous incompressible fluid move about a fixed point (. The system
body plus fluid is heated up so as to obtain mechanical equilibrium and bring the center of
mass to the fixed point O.

We introduce the fixed orthogonal coordinate system Oy, Us¥s (with the Yy, -axis directed
upward) and a moving coordinate system Oz,z,z; rigidly attached to the body.

In the coordinate system Oz,z,z; the equations of heat convection that define fluid mo-
tion in the Boussinesq approximation are of the form

W4 uV) uroxXx(wXxr)+eXr420Xxu=

~ 00 'Vp + vAu + gBk,T, T + (u, V)=yAT, divu =0, (ze=Q) (1.1)
where u is the fluid relative velocity vector, o and & are the angular velocity and accelera-
tion of the body, T is the temperature read from its mean constant value T,, p represents
pressure deviation from the hydrostatic pressure p, which corresponds to the constant temp-
erature Ty, p=p, (1 — P7T) 1is the fluid density, v, P, y are the coefficients of kinematic
viscosity, thermal expansion, and thermal conductivity, respectively, k; is the unit vector
of axis Oy; r is the radius vector relative to point ¢, and Q is the bounded region filled
with fluid.

Let us clarify the conditions under which mechanical equilibrium is possible, i.e. the
body with fluid is stationary. 'We set in Egs. (1.1) the relative and angular velocities equal
zero and shall seek the steady temperature and pressure distribution in the state of mechan-
ical equilibrium. Denoting by T, and p, the equilibrium distribution of temperature and
pressure distribution, from (1.1l) we then obtain

- pGIVpo + gB kT = 0, VI, =0
As shown in /1/, temperature T, changes linearly with height

To=—ays+ b (1.2)
where a and b are constants.
We linearize system (l1.1) about the equilibrium position

=0, 0,=0 Ty=—ay,+b, -— 00" Upo + g8k T, = O
and obtain

W+ P(eX1)=—Vp+ Ou-+ RTky, dive =0, T'FPIAT + P (kyu), P >, R= ghalt (1.3
X

which is in dimensionless form, with P denoting the Prandtl number, R the Rayleigh number,
and L representing a characteristic linear dimension of region Q.
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The thermal conductivity of the vessel wall is considered to be considerably higher than
that of the fluid, it is therefore possible to assume an unchanging equilibrium distribution
of temperature with its perturbation vanishing along the cavity wall. At the cavity wall the
following conditions

u=0, 7=0 on § vl.d)
are then satisfied.

We denote by M, and M, the mass of the body and fluid, respectively, and by r, r, the
radius vectors of their centers of inertia in the unperturbed state relative to point o.
With an accuracy to terms of second order of smallness we have

Moty + Myey = Moto + po S r(1 —BT,—BT)dQ = Mars —pof { ¢T d02 = —poﬂ§ 7' dQ (1.5)
2 &

where M, = M, -+ M, is the mass of the complete system and r; is the radius vector of the
system body plus fluid in the unperturbed state, which by definition is zero.

In the case considered here the system body plus fluid is subjected only to the gravity
force moment which is induced by the displacement of the center of inertia owing to the non-
uniform heating of the fluid in the perturbed motion. Then, by analogy with /2,3/ and with
allowance for (1.5), the linearized equation of motion of the body with heated fluid written
in dimensionless form is

Je+PG%§rXudQ+RP”G(k3x {rrd0)=0, 6=2 (1.6)
Q

where (G is a dimensionless quantity, p, is the mean density of the body plus fluid, and J
is the dimensionless moment of inertia in the mechanical equilibrium state.

Let us investigate the problem of determination of the motion of the body with heated
£fluid (1.3), (1.4), and (1.6) with the initial conditions

u|,_o=uo, Tl‘_m:TO, a)l,_o=m0 (1.7)

2. The theorem of existence. We denote by L.o(Q) the closure in the L,-norm of the
set of all smooth solenoidal vector functions v that satisfy on § the condition v, =0, It
was shown in /4/ that the orthogonal complement L,,(Q) in L, is the closure in the L,-norm
of gradients of all smooth functions in Q.

We introduce the space W}, (Q) which is obtained as the supplement of the set of infinit-
ely differentiable finite in Q solenoidal vectors in the metric that corresponds to the scalar
product

(u, v) = S‘ Vu¥vdQ
8

We denote by H,(Q) the Hilbert space consisting of all functions summable in quadrature
over region £, and by H;!(Q) the Sobolev space with the norm

nru==-§|grad2'|’dn+ {17 pas
S

tet H3s(Q) be a subspace of Hy'(Q) of functions that vanish on §.

Let II be the orthogonal projector from L,(R) into L, ,(®). It was shown in /5,6/ that
the operator —~IIA in W,‘,., () can be extended to the self-conjugate positive definite operat-
or A, and in /1/ that the operator A can be extended according to Friedrichs to the self-
conjugate positive definite operator g.

Let us transform the system of Egs. (1.3), (1.6). For this we determine using (1.6) the
angular acceleration e which we substitute into the first equation of system (1.3). Thenact
on the obtained equation by the operator 1. This yields

(I+Bu =—4u-+ R(S,+B) T, T'= — PGT + P'Seu, Bv=GII (r x J1 §r x vdQ) (2.1)
ST =0kT, Bw=—GI(r> J kg~ | rTdQ). S = (ks v)
Q

It is convenient to consider system (2.1) as a single ordinary differential equation in
the Hilbert space L, ,(RQ) = H,(RQ), namely the equation
QT]’ (t) -+ J‘”T] (l') -+ A‘V‘q (l) =0 (2.2)

where operators @, M, N are defined by matrices
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I+B 0 4 0 1 0  —RE:+B
‘1’*% 0 fg* M= % P-lcg’ "‘=§-—Pﬂsg % x)g' ““’=ﬁ;ﬁ

We supplement Eg.{2.2) by the initial condition
7(0) =1, = col (s, T9 (2.3

we denots by B, = B ({0, Ml L. , > H,) the space of all highly measurable in L, , X H,
functions 1w {f) = col {u, 7} for which the nom

is finite.
It was shown in /3,8/ that operator H is self-conjugate and negative in By e {, ana

I1Bl <1 It is evident that

I By, 2o wiifBe i 18 hilgh
A 7 =2 e [ 1 AR B s R RAHFMY
Then {§ is the self-conjugate positive definite operator
L 2 3 P N ] n n r\‘ EY na
o =0 —iFhinp (2.4}

Since operator B is bounded in Ly () hence

feni< U+ 11BNt (2.5
On the basis of the above reasoning it is possible to consider in the space L, X H,
the operators @ and @°. Carrying out in Eqg. (2.2} the substitution 1{f) = i we re-
duce problem (2.2}, {2.3) to the form

PR : - AL n L7 \ S 3 Py . P L, WL Y Y T ” ) me pu mew

& TWE IR T U U e B Tes @ = PN Fora §UANG (2.0}

As the solution of problem (2.6) in B, we understand the absolutely continuous function
{f) which 3t almost all ! satisfies the gyuation and initial conditien (2.5), and such ¥/ {#),

I WAL R RARUEL =

$f - FE belong to B,

Theorem 1. Let i, belong to the determination region of operator ¢ then problem {2.5)
has a unigue solution in &y

Proof, Let L () be an arbitrary function in B, then from (2.5) we obtain

PEOI<A-1BDICT LM

By setting in it { = @Yy and taking into account {2.4) we obtain
POl + EBD S 1@l = @, @y = Qe W= >0 — [ BiYehp] 2.7

Operator & is by ﬁ&fimtxon self~gonjugate in Ly, X H, We shall prove its positive
definiteness using {2.7) and the positive definiteness of operator Af. We have

(@ u, W= (M@P5n, Q) Byl 22~ BN U+LBD = ul?

Operatur F is completely subordinated to operator @ /9/. Indeed, operator F oan be
represented as F = G- 'NM'@/p, where cperator - .NM-1@r: 1is entirely continucus in
Ly, (&) > H,(8) as the product of the entirely continuous operator M™' and bounded operators.

1t follows from the results in /9/ that the semigroup generated by operator L F is
analytic. 7The proof of the theorem now follows from /10/.

If §{ is a sclution of problem {2.6), we considexr function w{) = @'#E() as the
generalized solution of problem (1.3}, (1.4}, (1.6), {L.7.

3. Normal perturbations. Let us consider the normal perturb&tians of the nonuniform-

I hoared £1 .uA Ermmed adandl el bl Sl samded e wl ddve sesmede Jnom ey mTaesw Y TP T L I T ey
¥ SRR Sk QRSVLLRLEW Wil WG WLl O &0 =;fauvw. HWX ysu; &a«%\&; .&,1:! Wiz Fadad STGGY

particular solutions of the probliem whith depend on time in conformity with an exponential
law
{(u, p, TY = exp {— &) fuy. Py, Ty}

Y QTR

the system of eguations AT+ By = e Ay, - RS, - B)T

- e Ad APy Sy W oee Uy b AL ANy T iRy 43

where Uy, py, Iy are functions of coordinates only. For these functioms we obtain from (3.1)
%2
AR 3

kB

-~
—p Tyo= — PO T, + P8, u,

which can he represented in the form of a single sguation in a Cartesian product of Hilbert
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spaces L, ,{8) and H;{®). namely
— AGn 4 My - Ny =0, v = col (m,. T
Setting T =% we cbtain
e h§ FQE + FE =0 (3.2)
It is clear from the Construction that the spectra of Egs.(3.1) and (3.2) are the same.

Let us investigate the spactrum disposition in the plane and its dependence on the Rayleigh
number.

Theorem Z. The entire spectrum of problem {3.1) consists of pormal eigenvalues Agjl.. . .
and lies in the regicn

Re 2 2 ApaxQ) dmin (M) - | N dmin (@)s [ Im A< RN | 2 (O (3.3)
Thate exists not mure than a finite number of sigenvalues

?\i‘ with BG};‘{:GX as ke oo, R?,Z}t -—.~»Lcc)
The gystem of root vestors of problem (3.1) is complete in the space I, () X &t (5.
Proof. Cperxator @ i3 self-conjugate with a discrete spectrum /11/, so that 9=
QMg 1s a self-conjugate completaly continuous operator in Iz H,. Then Fo-ti=
QV:NM~Q%: is a completely continueus operator, i.a. F is the completely continuous op~
erator @ /1i/.
Let us consider the jdentity

FFDT = (G M@ NG NG WG My = O UTINMTIG
Then by virtue of properties of the §-numers we have
$, (IR Y == 5, (@M TINMQY <) GHMTW QY] K s (MY {3.4)
Since M= acts from Lss XH, inte W.,x Hi, hence it follows in conformity with /12/
that .
el 8 (MUY g (3.5}
Inequalities (3.4} and (3.5) imply that operator d~:fd-: is of finite order. Then fxom
theocrem 10.1 in /11/ follows that the spectrum consigts of normal eigenvalues and that the

system of root vectors of problem (3.1) is complete in the space W), (Q) x Hia (5.
Representing the bounded operator § in the form

FamReF+ilm#, Ref=tt00 pppo £o1Y

-r
we ohtain from {3.2)

(Re h + ilm A) § § #% = (D §) + (Re FE, &) + i {Im FE, §)
From which

Redy3i*=(OL B+ ReFE L), ImAfEr=(ImFL{

(OF, &y | (ReFy B) . (MQ™g, Q7))  1{Refk )
Re = (g & B > B e 8 (3.6)

Moreovey, if we set g = J*V:f then
Qs gy | (M w3 PP g M {3.7)
Bep = Toer TR

L (G P
Amia () -}%%;E‘;; = hogta (M) 3;‘?%"""‘ At { M) My (Q)

tet us evaluate the second term by analogy with (3.7}
Ra £ 3 NQTE, QTN o )
{ ;fi A1 H;w; R*%w&-gg‘\ 1 Mg () £3.8)

Then neing inequalities (3.6)= {3,8) we obtain the first of inegualivies ({3.3). The
second of inequalities {3.5) is similarly proved. "The theorem is proved.

Theorem 3. Let the f£luid be heated from beneath,i.e. the Rayleigh number R is positive.
TF i+ amtisfies the inewuality

and then
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R < Shpin (4) haen (O) @+ 6ToT o2, Jo= {12402 (3.9)
Q

where Jo is the dimensionless polar moment of inertia of the fluid relative to point 0 and
Js3 is the smallest component of the moment of inertia J, then the complete spectrum of
propblem (3.1) lies in the regiom
ReA >0, |ImA | <IN | A (@)
Proof. we transform system (3.1) to the form
— A+ Bu+4+ Au=R(S,+B)7T, — MPRT + RCT = RS,u

If A is the eigenvalue of system (3.1) to which corresponds the eigenfunction
T), then the egqualities

—Ai{f+ BYruP+idhuiP=R

are valid. It follows from this that

Tow\ L
1 iy

u R.T wuil — APR
, By Oy n L

y &,

Ty

2+R

e Ch:T )2 =

Hoyy 1 ~ bl

Rea (| (I +B)suj?+ PR TI® =) A%u |2 + R § C/T |#~— RBe (ST, u) + (By, T, u) + (Sp, u, 7)]  (3.11)
By virtue of the construction of operators S, S,, B,

[Re (ST, 0) | < 1 (ST w) | < I T [ luj 3.12)

JRe (Su, ) I <1 S, IS UT I huy
IRe(BlT.u)|<[(BIT,U)IQGJ‘,J”"‘"T“ ful

Then from (3.12) and (3.11) follows that
Reh (| (I + BYru |2+ PR|TIH >|A%ulp+ RICHT [P~ R2+ Gl | T lu] (3.13)
Since operators A and C are positive definite and self-conjugate, hence
| A | = (4w, u) 2> hain (A) 4 |2, | €T I > A OV T2
From this and (3.13) we obtain the inequality
ReA () (I + B wl* -+ PRIT ) 3 han (4) [ [ + Rhoa O I T 2= R (2 + 6T (el ult + 5 17 1F)
Setting & = 2hmin(4) (2 4+ GJJs5Y)"*R-? we obtain the following valid estimate for Re):

RM2 4 Gyt \ s
T (4) )Il I

_— - P s P T TN lh\ r¥aly
Rer(|(/ + BY [P+ PR T [} > {Rhmu (C)—

This and the conditions of the theorem constitute the proof.
Thus, when condition (3.9) is satisfied and the fluid is heated from below, the oscillat-
ing normal perturbations are dampened. In this case

Imi=—RIm(B7,u)(id+B:uP+PR|T|>

The last formula shows that the oscillating perturbations are induced by operator B;
associated with the transport force. When the body heated from underneath is stationary, there
are no normal oscillating perturbations.

If there is no temperature gradient, R = 0, then it follows from (3.1) that the entire
spectrum consists of real positive numbers with a single limit point -4 o. In that case all

perturbations are monotonically damped, i.e.equilibrium of the system body plus £luid is stable.
Theorem Let the fluid be

~eLicll &, L tae Zaul ¢

I1f it satisfies the inequality

cated from above
leated Ir ove

om above, i.e, the R

| R | << 4hmin (4) Amin (C) 552G~2T ,~2 (3.14)
the entire spectrum of problem (3.1) lies in the region
Reh > 0, {ImA | <N [ Amin (Q)

Proof. From (3.10) we have the equality

o MO DD T S L 1 A, 08 N
CuT— rvy o2 ) At uge i

ol
— Ry C"

[AVIPS SN =1
— A\l T Dy

It is obvious that
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(Sy. T.u) = (S,un, T)

From this and the preceding equality we have

Redm LA WP—RICTE—RIm(BT, w

i+ By i~ PRITF 3.15)
As in the proof of Theorem 3, we obtain
Al — RECHT P — R Im (ByTo w) > | B [ (hmin (O) = | R IG¥,%47 Ak (4) J3) | T 12 (3.16)

Proof of the theorem follows from inequalities (3.14) and (3.16).

When the body is stationary, operator B, =0, then (3.15) implies that RelX T 0 ana
motion of the fluid is stable. This fact is known from the theory of free convection (see
e.g. /1/}).

The authors thank S. G. Krein and N. G. Kopachevskii for discussing this paper, and the
reviewer for his remarks.
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